

FLEX4015热电阻模块用户手册

大连哲勤科技有限公司 联系电话: 0411-66831953 13795113856 传真: 0411-39855398

网址: http://www.infwin.com 邮件: infwin@163.com QQ:617165508 - 1 -

目 录

1 产品介绍	
2 电气连接及安装	5
3 通讯协议	8
3.1 Modbus RTU/ASCII通信协议	8
3.1.1 Modbus寄存器地址映射	8
3.1.2 Modbus协议数据读取以及处理	11
3.2 ADAM研华通信协议	15
3.2.1 研华通信协议命令	15
3.2.1.1 读取单通道的数据命令	15
3.2.1.2 读取所有通道的数据命令	16
3.3 ASCII码对照表	19
4 设置软件使用说明	19
4.1 设置软件与处于设置状态的模块通信	19
4.2 设置软件与处于运行状态的模块通信	22
4.3 串□通信参数如何设置	24
5 使用串□调试软件读取数据	25
5.1 Modbus-RTU通信协议	25
5.2 Modbus-ASCII通信协议	26
5.3 ADAM研华通信协议	26

1 产品介绍

FLEX-4015 热电阻采集模块是 FLEX-4000 系列智能测控模块之一,广泛应用于温度/电阻测量的工业场合,提供了热电阻/电阻信号的采集以及转换,线性处理并转换成线性化的数据值,经 RS-485 总线传送到控制器。FLEX-4015 具有六个测量通道,支持热电阻的两线制/三线制连接,可连接 PT50、PT100、PT200、PT500、PT1000、CU50、CU100、Ni100、Ni120、Ni500、Ni000等多种规格热电阻,也可对电阻进行测量。模块内部各处理单元之间提供了 3000V 的电气隔离,有效的防止模块因外界高压冲击而损坏,为工厂自动化以及楼宇自动化提供了高效的解决方案。模块主要特点如下:

- 六通道模拟量输入
- 可由软件设置模块参数
- 支持多种标准的热电阻, 可两线制/三线制连接
- 宽电压范围输入(18-36V DC), 功耗低
- RS-485 网络连接, 支持 Modbus RTU/ASCII 以及 ADAM 研华数据采集协议
- 内置看门狗,运行稳定可靠
- 安装方便,标准导轨卡装或螺钉固定
- 宽温度范围运行

表1.技术参数						
输入通道数量	6通道热电阻输入 (三线制)					
通讯接□	RS-485 光电隔离,ESD 保护,通讯距离:1200 米					
通讯协议	Modbus RTU/ASCII, ADAM 研华数据采集协议					
传感器类型	Pt100/200/500/1000 (TCR=3851/3916/3920/3911/3928/3750)					
	Ni100/120/500/1000 (TCR=6180/6720)					
	Cu50/100 (TCR=428)					
	电阻 0~400 Ω/0~3200 Ω					
传感器连接方式	两线制/三线制					
输入类型/范围/精度	见表 2					
隔离电压	模拟量输入对通讯 3000V					
	电源对通讯 3000V					
	电源对模拟量输入 3000V					
采样速率	6通道/秒 (@三次滤波)					
输入阻抗	10M					
带宽	2. 62 Hz					
分辨率	0.1℃/0.1Ω					
CMR@50/60Hz	120 dB					
NMR@50/60Hz	100 dB					
零点漂移	$\pm 3 \mu \text{ V/C}$					
电源电压	+18~+36V DC					
功耗	小于 2W @ 24VDC					
储存环境	-40~85℃ 湿度<95%					
运行环境	-20~85℃ 湿度<95%					
外型尺寸	92*71*67 mm					

安装方式

DIN35mm 标准导轨卡装或螺钉固定

表 2 传感器类型							
传感器类型	测量范围	分辨率	精度				
Pt100 (TCR=3851)	−200.0 ~ 850.0 °C	0.1℃	+/-0.3°C				
Pt200 (TCR=3851)	−200.0 ~ 850.0 °C	0.1℃	+/-0.3°C				
Pt500 (TCR=3851)	−200.0 ~ 850.0 °C	0.1℃	+/-0.3°C				
Pt1000 (TCR=3851)	−200.0 ~ 700.0 °C	0.1℃	+/-0.3°C				
Pt100 (TCR=3916)	-200.0 [~] 850.0 ℃	0.1℃	+/-0.3℃				
Pt200 (TCR=3916)	−200.0 ~ 850.0 °C	0.1℃	+/-0.3°C				
Pt500 (TCR=3916)	−200.0 ~ 850.0 °C	0.1℃	+/-0.3°C				
Pt1000 (TCR=3916)	−200.0 ~ 700.0 °C	0.1℃	+/-0.3°C				
Pt100 (TCR=3920)	−200.0 ~ 850.0 °C	0.1℃	+/-0.3°C				
Pt200 (TCR=3920)	-200.0 [~] 850.0 ℃	0.1℃	+/-0.3℃				
Pt500 (TCR=3920)	−200.0 [~] 845.0 °C	0.1℃	+/-0.3℃				
Pt1000 (TCR=3920)	−200.0 ~ 700.0 °C	0.1℃	+/-0.3℃				
Pt100 (TCR=3911)	−200.0 ~ 850.0 °C	0.1℃	+/-0.3℃				
Pt200 (TCR=3911)	−200.0 [~] 850.0 ℃	0.1℃	+/-0.3℃				
Pt500 (TCR=3911)	−200.0 [~] 850.0 ℃	0.1℃	+/-0.3℃				
Pt1000 (TCR=3911)	−200.0 [~] 700.0 °C	0.1℃	+/-0.3℃				
Pt100 (TCR=3928)	−200.0 [~] 850.0 ℃	0.1℃	+/-0.3℃				
Pt200 (TCR=3928)	−200.0 [~] 850.0 ℃	0.1℃	+/-0.3℃				
Pt500 (TCR=3928)	−200.0 [~] 850.0 ℃	0.1℃	+/-0.3℃				
Pt1000 (TCR=3928)	−200.0 [~] 700.0 °C	0.1℃	+/-0.3℃				
Pt100 (TCR=3750)	−200.0 [~] 850.0 ℃	0.1℃	+/-0.3℃				
Pt200 (TCR=3750)	−200.0 [~] 850.0 ℃	0.1℃	+/-0.3℃				
Pt500 (TCR=3750)	−200.0 [~] 850.0 ℃	0.1℃	+/-0.3℃				
Pt1000 (TCR=3750)	−200.0 [~] 700.0 °C	0.1℃	+/-0.3℃				
Ni100 (TCR=6180)	-60.0 [~] 250.0 ℃	0.1℃	+/-0.3℃				
Ni120 (TCR=6180)	-60.0 [~] 250.0 ℃	0.1℃	+/-0.3℃				
Ni500 (TCR=6180)	-60.0 [~] 250.0 ℃	0.1℃	+/-0.3℃				
Ni1000 (TCR=6180)	-60.0 [~] 250.0 ℃	0.1℃	+/-0.3℃				
Ni100 (TCR=6720)	-60.0 [~] 250.0 ℃	0.1℃	+/-0.3℃				
Ni120 (TCR=6720)	-60.0 [~] 250.0 ℃	0.1℃	+/−0.3℃				
Ni500 (TCR=6720)	-60.0 [~] 250.0 ℃	0.1℃	+/-0.3℃				
Ni1000 (TCR=6720)	-60.0 [~] 250.0 ℃	0.1℃	+/-0.3℃				
Cu50 (TCR=428)	−50.0 [~] 150.0 °C	0.1℃	+/-0.3℃				
Cu100 (TCR=428)	−50.0 [~] 150.0 °C	0.1℃	+/-0.3℃				
Cu1000 (TCR=428)	−50.0 [~] 150.0 °C	0.1℃	+/-0.3℃				
R-400(电阻)	0.0 ~ 400.0 Ω	0.1Ω	+/-0.3Ω				
R-3200(电阻)	0.0 ~ 3200.0 Ω	0.1Ω	+/-0.3Ω				
Pt50 (TCR=3851)	−200.0 ~ 850.0 °C	0.3°C	+/-0.3°C				

大连哲勤科技有限公司 联系电话: 0411-66831953 13795113856 传真: 0411-39855398

网址: http://www.infwin.com 邮件: infwin@163.com QQ:617165508 - 4 -

2 电气连接及安装

端子说明

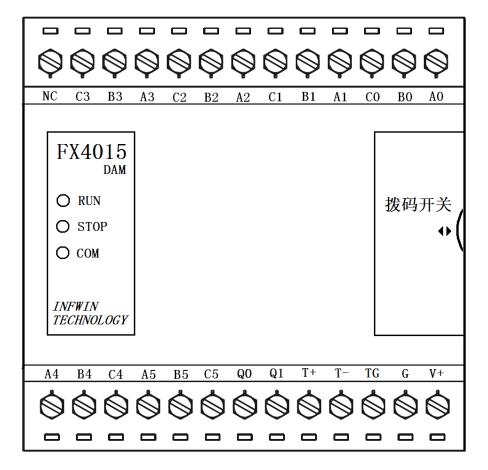
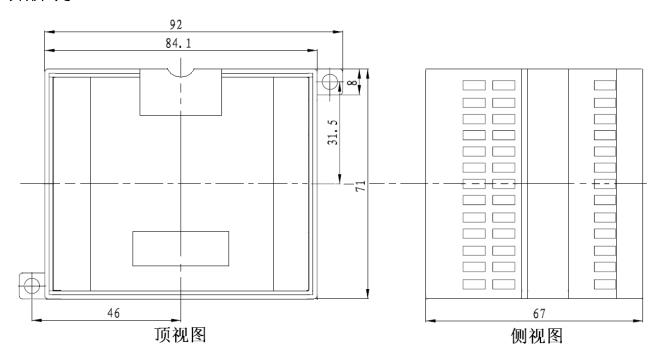
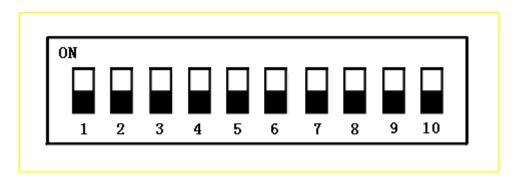



图2 接线端子

	表3 端子说明								
序号	端子	说明		序号	端子	说明			
1	A0	通道0输入		14	A4	通道4输入			
2	В0	通道0输入		15	B4	通道4输入			
3	C0	通道0输入		16	C4	通道4输入			
4	A1	通道1输入		17	A5	通道5输入			
5	B1	通道1输入		18	В5	通道5输入			
6	C1	通道1输入		19	C5	通道5输入			
7	A2	通道2输入		20	Q0	不连接			
8	B2	通道2输入		21	Q1	不连接			
9	C2	通道2输入		22	T+	RS485+			
10	A3	通道3输入		23	T-	RS485-			
11	В3	通道3输入		24	TG	RS485通讯地			
12	C3	通道3输入		25	G	输入电源地			
13	NC	不连接		26	V+	输入电源正			


外形尺寸

拨码开关

模块具有一个10位的拨码开关,说明如下。

拨码开关第 1-8 位:用于设置 Modbus 地址,可设置范围为 1-255。

拨码开关

拨码开关序号	1	2	3	4	5	6	7	8
地址位元	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
地址=0(注1)	OFF							
地址=1	OFF	OFF	0FF	OFF	OFF	OFF	OFF	ON
地址=2	OFF	OFF	0FF	0FF	OFF	OFF	ON	0FF
地址=3	OFF	OFF	0FF	0FF	OFF	OFF	ON	ON
•••••	•••••	•••••	•••••	••••	•••••	•••••	•••••	•••••
地址=127	0FF	ON						
地址=128	ON	OFF	0FF	0FF	OFF	OFF	OFF	0FF
地址=129	ON	OFF	OFF	OFF	OFF	OFF	OFF	ON
•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••

| 地址=254 | ON | OFF |
|--------|----|----|----|----|----|----|----|-----|
| 地址=255 | ON |

注 1: 当拨码开关全部为 OFF 时,模块的地址由内部寄存器设置,详见通信协议章节。

第9,10位用于设置模块的运行状态。具体如下:

拨码开关序号	9	10	模块状态
0	0FF	OFF	运行模式
1	0FF	ON	设置模式
2	ON	OFF	运行模式
3	ON	ON	运行模式

模块处于设置模式时,模块的 Modbus 地址默认为 0,通信配置默认为:9600,N,8,1 (9600bps,无校验位,8个数据位,一个停止位),方便用户与模块进行通信。这是设置模式与运行模式的唯一区别。

运行模式时,如果模块的外部拨码开关设置的 Modbus 地址为 0,则实际的 Modbus 地址由模块内部的地址寄存器决定;如果模块的外部拨码开关设置的 Modbus 地址不为 0,模块的 Modbus 地址由拨码开关第 1-8 位(或模块内部寄存器)决定;通信配置(波特率,校验位,通信协议)由模块内部寄存器的设置。

电源连接(供电为18-36V宽范围直流,建议使用24V直流电源)

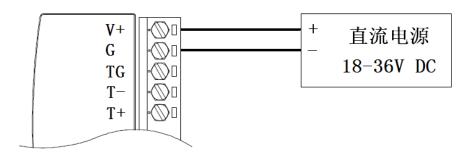


图3 电源接线

注:可连接 18~36V 直流电源供电,但电源功率必须满足模块要求。如在标准 24V 供电的情况下,模块功耗小于 2W,在选择电源时要选择大于 2W 的电源模块。当为多个模块供电的情况下,电源功率应大于 (2W*模块数)。

传感器连接

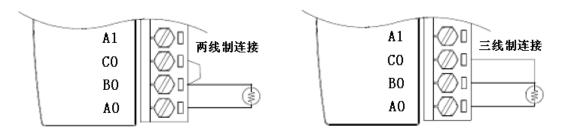


图4 传感器接线

通讯连接

大连哲勤科技有限公司 联系电话: 0411-66831953 13795113856 传真: 0411-39855398 网址: http://www.infwin.com 邮件: infwin@163.com QQ:617165508

图5 主设备与模块通过RS232/RS485转换器连接

注:图中RS232/485转换器使用ADAM4520作为示意,可根据需要自行选择。

表4 RS485半双工连接							
主设备(一般为PC)		RS232,	FLEX模块			
RS232引脚定义	DB9	DB25	主设备连接侧	FLEX模块侧			
RX	2	2	见所选择的RS232/485	A/A+	T+		
TX	3	3	转换器用户手册	B/B-	T-		
COM(公共地)	5	7		COM	TG		

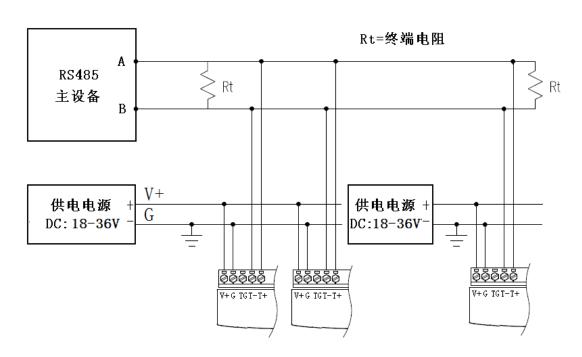


图6 RS485网络通讯连接

注 2: 通讯电缆的屏蔽层可与 FLEX 模块通讯地(TG)连接

大连哲勤科技有限公司 联系电话: 0411-66831953 13795113856 传真: 0411-39855398 网址: http://www.infwin.com 邮件: infwin@163.com QQ:617165508

3 通讯协议

3.1 Modbus RTU/ASCII 通信协议

Modbus 是一种串行通信协议,是 Modicon 于 1979 年为使用可编程逻辑控制器 (PLC) 而发表的。事实上,它已经成为工业领域通信协议标准,并且现在是工业电子设备之间相当常用的连接方式。Modbus 在工业现场中有着广泛的应用。

Modbus 协议是一个主/从架构的协议。有一个节点是主节点,其他使用 Modbus 协议参与通信的节点是从节点。每一个 从设备都有一个唯一的地址。

3.1.1 Modbus 寄存器地址映射

寄存器	PLC 地址	功能号	功能说明	读/写	有效值
0x0000	400001	03	通道0测量值	读	当通道不连接传感器,或者传感器测量出现异
	300001	04			常时,读出的数据为 0x8000, 即-32768。
0x0001	400002	03	通道1测量值	读	
	300002	04			
0x0002	400003	03	通道2测量值	读	
	300003	04			
0x0003	400004	03	通道3测量值	读	
	300004	04			
0x0004	400005	03	通道4测量值	读	
	300005	04			
0x0005	400006	03	通道 5 测量值	读	
	300006	04			
0x0006	N/A	N/A	N/A	N/A	N/A
0x001F					
0x0020	400033	03	通道0测量校准值	读	通道 N 测量校准值=通道 N 测量值+通道 N 校准
	300033	04			值
0x0021	400034	03	通道1测量校准值	读	
	300034	04			
0x0022	400035	03	通道2测量校准值	读	
	300035	04			
0x0023	400036	03	通道3测量校准值	读	
	300036	04			
0x0024	400037	03	通道4测量校准值	读	
	300037	04			
0x0025	400038	03	通道 5 测量校准值	读	
	300038	04			
0x0026	N/A	N/A	N/A	N/A	N/A
0x003F					
0x0040	400065	03/06/16	通道0校准值	读/写	
0x0041	400066	03/06/16	通道1校准值	读/写	
0x0042	400067	03/06/16	通道2校准值	读/写	

0x0043	400068	03/06/16	通道3校准值	读/写	
0x0044	400069	03/06/16	通道4校准值	读/写	
0x0045	400070	03/06/16	通道 5 校准值	读/写	
0x0046	N/A	N/A	N/A	N/A	N/A
0x005F					
0x0060	400097	03/06/16	通道 0 传感器类型	读/写	0=Pt100 (TCR=3851) (默认值)
					1=Pt200 (TCR=3851)
					2=Pt500 (TCR=3851)
					3=Pt1000 (TCR=3851)
					4=Pt100 (TCR=3916)
					5=Pt200 (TCR=3916)
0x0061	400098	03/06/16	通道1传感器类型	读/写	6=Pt500 (TCR=3916)
					7=Pt1000 (TCR=3916)
					8=Pt100 (TCR=3920)
					9=Pt200 (TCR=3920)
					10=Pt500 (TCR=3920)
					11=Pt1000 (TCR=3920)
0x0062	400099	03/06/16		读/写	12=Pt100 (TCR=3911)
					13=Pt200 (TCR=3911)
					14=Pt500 (TCR=3911)
					15=Pt1000 (TCR=3911)
					16=Pt100 (TCR=3928)
					17=Pt200 (TCR=3928)
0x0063	400100	03/06/16		读/写	18=Pt500 (TCR=3928)
		, ,	222 17/8/88/7		19=Pt1000 (TCR=3928)
					20=Pt100 (TCR=3750)
					21=Pt200 (TCR=3750)
					22=Pt500 (TCR=3750)
					23=Pt1000 (TCR=3750)
0x0064	400101	03/06/16	 通道 4 传感器类型	读/写	24=Ni100 (TCR=6180)
0.0001	100101	00/00/10			25=Ni120 (TCR=6180)
					26=Ni500 (TCR=6180)
					27=Ni1000 (TCR=6180)
					28=Ni100 (TCR=6720)
					29=Ni120 (TCR=6720)
0x0065	400102	03/06/16	海洋 5 <i>牛</i> 感 恕 米 刑	凌/戸	30=Ni500 (TCR=6720)
COUUAU	400102	09/00/10	通道 5 传感器类型	读/写	31=Ni1000 (TCR=6720)
					32=Cu50 (TCR=428)
					33=Cu100 (TCR=428)
					34=Cu1000 (TCR=428)
					35=R-400(电阻)
					36=R-3200(电阻)
					37=Pt50 (TCR=3851)

0x0066	N/A	N/A	N/A	N/A	N/A
0x006F					
0x0070	400113	03/06/16	通道0滤波次数	读/写	1–16
0x0071	400114	03/06/16	通道1滤波次数	读/写	1=1 次滤波
0x0072	400115	03/06/16	通道 2 滤波次数	读/写	2=2 次滤波
0x0073	400116	03/06/16	通道3滤波次数	读/写	3=3 次滤波(默认值)
0x0074	400117	03/06/16	通道4滤波次数	读/写	
0x0075	400118	03/06/16	通道 5 滤波次数	读/写	
0x0076	N/A	N/A	N/A	N/A	N/A
0x007F					
0x0080	400129	03/06/16	Modbus 从机地址	读/写	1-255 (默认值为 1)
					注:
					0为 Modbus 广播地址
0x0081	400130	03/06/16	串行通讯波特率	读/写	0=1200 bps
					1=2400 bps
					2=4800 bps
					3=9600 bps (默认值)
					4=19200 bps
					5=38400 bps
					6=57600 bps
					7=115200 bps
0x0082	400131	03/06/16	串行通讯协议	读/写	O=Modbus RTU 默认
					1=Modbus ASCII
					2=ADAM 研华通信协议
0x0083	400132	03/06/16	串行通讯校验位	读/写	0=无校验(默认值)
					1=偶校验
					2=奇校验

3.1.2 Modbus 协议数据读取以及处理

以读取6路温度数据(下表中红色粗体)为例。通信前请先确认模块的Modbus地址,通讯配置默认为:9600,N,8,1(9600bps, 无校验位,8个数据位,一个停止位)

举例:读寄存器 0x0000H-0x0005H,即六路温度测量值(负值按补码表示)

测量值寄存器:

寄存器	功能号	功能说明	读/写
0x0000	04	通道0测量值	读
0x0001	04	通道1测量值	读
0x0002	04	通道2测量值	读
0x0003	04	通道3测量值	读
0x0004	04	通道4测量值	读
0x0005	04	通道5测量值	读

大连哲勤科技有限公司 联系电话: 0411-66831953 13795113856 传真: 0411-39855398

网址: http://www.infwin.com 邮件: infwin@163.com QQ:617165508 - 11 -

Modbus-RTU 数据格式

Modbus 协议 RTU 模式是一种二进制协议,要求每一帧的起始和结束都以至少 3.5 个字符为间隔。由于收到的每个字节都有可能成为一帧数据的最后一个字节,因此,每接收一个字节,关闭上一个已经开启的 3.5 个字符时间和 1.5 个字符时间的定时器,处理完接收到得数据后再次启动 3.5 个字符时间和 1.5 个字符时间的定时器,以检测该帧数据的结束。

请求: 01 04 00 00 00 06 70 08 (8 个字节)

从机地址	1字节	0x01
功能号	1 字节	0x04
起始地址	2 字节	0x0000
寄存器数量	2 字节	0x0006
校验	2 字节	0x7008

响向: 01 04 0C 00 63 80 00 80 00 80 00 80 00 80 00 3C BA (17个字节)

从机地址	1字节	0x01
	1字节	0x04
 有效字节数	1字节	0x0C
数据	12字节	0x00 (第0路温度高字节)
		0x63 (第0路温度低字节)
		0x80 (第1路温度高字节)
		0x00 (第1路温度低字节)
		0x80 (第2路温度高字节)
		0x00 (第2路温度低字节)
		0x80 (第3路温度高字节)
		0x00 (第3路温度低字节)
		0x80 (第4路温度高字节)
		0x00 (第4路温度低字节)
		0x80 (第5路温度高字节)
		0x00 (第5路温度低字节)
校验	2字节	0x3CBA

在RTU模式中采用CRC(循环冗余检测)校验。具体的方法是将信息域中地址域、功能码、数据域的所有字节按规定的方式进行位移并进行XOR(异或)计算,得到2字节的CRC码。校验码在信息帧作为一连续的流进行传输。从站在收到该信息帧时按同样的方式进行计算.并将结果同收到双字节校验码比较,如果一致就认为通信正确,否则认为通信有误,从站将发送错误应答。以下为校验的示意程序。

当接收到设备返回的 17 个字节数据后,进行以下 crc 计算操作,其中 num (输入参数 2) = 17

//
//CRC 计算 C51 语言函数如下
//输入参数 1: snd,待校验的字节数组名
//输入参数 2: num, 待校验的字节总数 (包括 CRC 校验的 2 个字节)
//函数返回值:校验失败时返回非0值。校验成功返回0。
//
unsigned int calc crc16 (unsigned char *snd, unsigned char num)

大连哲勤科技有限公司 联系电话: 0411-66831953 13795113856 传真: 0411-39855398 网址: http://www.infwin.com 邮件: infwin@163.com QQ:617165508

```
{
 unsigned char i, j;
 unsigned int c, crc=0xFFFF;//crc 初始化为 0xFFFF
  for (i = 0; i < num; i ++)
   c = snd[i] & 0x00FF;//待发送的字节和 0x00FF 进行 "与"操作
   crc ^= c; //crc 与 c 做 "异或"操作, 结果存储于 crc 中
   for(j = 0; j < 8; j ++)
     if (crc & 0x0001) //检查 crc 最低位是否为 1
       crc>>=1; //crc 右移一位
       crc<sup>=0</sup>xA001; //crc 与 0xA001 做 "异或"操作,结果存储于 crc 中
     else
       crc>>=1; //crc 右移一位
   }
 return(crc);//返回 crc 校验结果
得到返回结果为0时那么校验成功,如果校验失败返回为非零值。
校验成功后,使用以下公式计算温湿度(负值以补码表示):
第 0 路温度= (0x00*256+0x63)/10 = 99/10 = 9.9℃
第1路温度= ((0xFF*256+0x00)-0xFFFF-0x01)/10 = -3276.8℃ (未连接传感器的值或者异常值)
第2路温度= ((0xFF*256+0x00)-0xFFFF-0x01)/10 = -3276.8℃ (未连接传感器的值或者异常值)
第 3 路温度= ((0xFF*256+0x00) -0xFFFF-0x01) /10 = -3276.8℃ (未连接传感器的值或者异常值)
第 4 路温度= ( (0xFF*256+0x00) -0xFFFF-0x01) /10 = -3276.8℃ (未连接传感器的值或者异常值)
第 5 路温度= ((0xFF*256+0x00) -0xFFFF-0x01)/10 = -3276.8℃(未连接传感器的值或者异常值)
```

负值的判断与处理: 如果返回值的二进制最高位为 1,那么表明返回的数据是负数,假设返回的值是 0xFF05 (16 进制,补码),那么其二进制表示为: 0b 11111111100000101,其最高位为 1,那么表明这个返回值是负数。处理数值时第一字节高字节为 0xFF,第二字节低字节为 0x 05,那么温度测量值为((0xFF*256+0x05)-0xFFFF-0x01)/10=(0xFF05-0xFFFF-0x01)/10=-25.1 摄氏度。

如果校验不成功,说明传输过程发生错误,应放弃此次采集到的数据,重新采集。

Modbus-ASCII 数据格式

呼叫与应答的信息用 16 进制的字符 0~9、A~F 表示,每两个 ASCII 字符组成一个信息字节,字符冒号<:>表示待传递信息的起始处,字符<CR>(回车)、<LF>(换行)表示此信息传送结束。MODBUS 中的 ASCII 码方式多用于实时性要求不高的场合。

大连哲勤科技有限公司 联系电话: 0411-66831953 13795113856 传真: 0411-39855398 网址: http://www.infwin.com 邮件: infwin@163.com QQ:617165508 - 13 -

请求: :01040000006F5(CR)(LF)

定界符	:	命令起始字符
从机地址	01	
功能号	04	
起始地址	0000	
寄存器数量	0006	
校验和	F5	为一个字节的累加和转换成的两
		位 16 进制数 ASCII,除定界符":"
		外,所有二进制字节和的相反数。
回车	CR	命令结束字符
换行	LF	命令结束字符

响应: :01040CFFF98000800080008000800077(CR)(LF)

<u> </u>	300000000000000000000000000000000000000	500000011 (CR) (LI')
定界符	:	命令起始字符
从机地址	01	
功能号	04	
有效字节数	0C	
数据		0xFF (第0路温度高字节)
		0xF9 (第0路温度低字节)
		0x80 (第1路温度高字节)
		0x00 (第1路温度低字节)
		0x80 (第2路温度高字节)
		0x00 (第2路温度低字节)
		0x80 (第3路温度高字节)
		0x00 (第3路温度低字节)
		0x80 (第4路温度高字节)
		0x00 (第4路温度低字节)
		0x80 (第5路温度高字节)
		0x00 (第5路温度低字节)
校验和	77	为一个字节的累加和转换成的两
		位 16 进制数 ASCII, 除定界符":"
		外,所有二进制字节和的相反数。
回车	CR	命令结束字符
换行	LF	命令结束字符

ASCII方式采用LRC(纵向冗余检测)校验,LRC域是一个包含一个8位二进制值的字节。LRC值由传输设备来计算并放到消息帧中,接收设备在接收消息的过程中计算LRC,并将它和接收到消息中LRC域中的值比较,如果两值不等,说明有错误。具体的方法是将消息域中的地址域、功能码、数据域的所有8位的字节数据连续累加,即排出协议中的起始字符冒号以及结束字符回车换行.不考虑进位。得到2字节的LRC码。它仅仅是把每一个需要传输的数据按字节叠加后取反加1即可。以下为发送校验的示意程序,接收校验程序可按此原理得到。

```
BYTE GetCheckCode(const char * pSendBuf, int nEnd)//获得校验码 {
BYTE byLrc = 0;
```

大连哲勤科技有限公司 联系电话: 0411-66831953 13795113856 传真: 0411-39855398 网址: http://www.infwin.com 邮件: infwin@163.com QQ:617165508 - 14 -


```
char pBuf[4];
int nData = 0:
for(i=1; i<end; i+=2) //i 初始为 1, 避开 "开始标记" 冒号
      //每两个需要发送的 ASCII 码转化为一个十六进制数
       pBuf [0] = pSendBuf [i];
       pBuf [1] = pSendBuf [i+1];
       pBuf [2] = ' \setminus 0';
       sscanf (pBuf, "%x", & nData);
       byLrc += nData;
byLrc = ~ byLrc;
byLrc ++;
return byLrc;
```

3.2 ADAM 研华通信协议

研华协议是研华公司为其设备定义的一种通信协议,协议为 ASCII 码传输,简单直观。模 块支持带有校验字节的 ADAM 研华数据读取命令,可以读取单通道数据或者全部通道数据。如 果希望使用研华协议作为模块的默认数据读取协议,可先使用设置软件将模块的通信协议设 置为"研华 ADAM"通信协议, 具体请参照设置软件使用章节。设置后重新上电以使协议生效。 当模块通信协议为"研华 ADAM"通信协议时,仅支持数据读取命令,其他设置相关的命令不 支持。

3.2.1 研华通信协议命令

请求	响应	功能	其他
#AAN(checksum) (CR)	>(data) (checksum) (CR)	读取单通道 的数据	读取指定通 道的数据
#AA (checksum) (CR)	>(data0) (data1) (data2) (data3) (data4) (data5) (checksum) (CR)	读取所有通 道的数据	读取所有通 道的数据

3.2.1.1 读取单通道的数据命令

读取地址为 AA 的模块的第 N 通道的测量值。发送与接收全部用 ASCII 码表示。

请求: #AAN (checksum) (CR)

定界符	#	1 字节	命令起始字符
从机地址	AA	2字节	AA (范围 00 [~] FF) 表示模块的两位 十六进制地址
通道号	N	1 字节	N为将要读出的通道号,N值为0~5
校验和	checksum	2字节	校验和。为定界符,从机地址以 及通道号数据的 ASCII 码 16 进制

大连哲勤科技有限公司 联系电话: 0411-66831953 13795113856 传真: 0411-39855398

网址: http://www.infwin.com 邮件: infwin@163.com

			的累加和,然后对 100H(16 进制) 求余数。并将余数转换为 ASC 码 作为 checksum 发送。
回车	CR	1字节	命令结束字符,即回车(ODH)

响应: >(data) (checksum) (CR)

r		1	
定界符	>	1 字节	命令起始字符
通道数据	data	7字节	通道测量值,以 "+" 或 "-" 开
			头,后面是4位十进制整数,一
			位小数点以及一位小数,测量值
			小于四位整数是前面以0补位,
			比如:-0035.7, +0125.6,
			+1200.0 _°
			传感器异常时输出-3276.8。
校验和	checksum	2 字节	校验和。为定界符,通道数据 data
			的 ASCII 码 16 进制的累加和,然
			后对 100H(16 进制)求余数。然后
			将余数转换为两个 ASC 码并与接
			收到的 checksum 比较,相等说明
			传输无误。
回车	CR	1字节	命令结束字符,即回车(ODH)

举例如下:读取01号模块的第0通道数据。

请求: #010B4(CR)

定界符	#	1 字节	命令起始字符
从机地址	01	2 字节	模块地址为 01
通道号	0	1 字节	通道 0
校验和	B4	2字节	校验值 B4 计算如下: 定界符,从 机地址以及通道号数据的 ASCII 码 16 进制的累加和,然后对 100H(16 进制)求余数。即(' #'+'0'+'1'+'0')= (23H+30H+31H+30H)=B4H, B4H%100H=B4H。然后将 B4H 转换 为两个 ASC 码 'B', '4'发送 出去。
回车	CR	1 字节	命令结束字符,即回车(0DH)

响应: >+0265.99D(CR)

定界符	>	1 字节	命令起始字符
通道数据	+0265. 9	7字节	通道 0 测量值为 265.9 度
校验和	9D	2 字节	校验值 9D 计算如下: 定界符,通 道数据的 ASCII 码 16 进制的累加 和,然后对 100H(16 进制)求余数。 即 ('>' + '+' + '0' + '2' + '6' + '5' + '. ' + '9')

大连哲勤科技有限公司 联系电话: 0411-66831953 13795113856 传真: 0411-39855398

网址: http://www.infwin.com 邮件: infwin@163.com QQ:617165508 - 16 -

			=(3EH+2BH+30H+32 H +36 H +35 H
			+2E H +39 H)= 19DH,
			19DH %100H=9DH。然后将 9DH 转
			换为两个 ASC 码 '9', 'D'并
			与接收到的校验和比较,相等说
			明传输无误。
回车	CR	1 字节	命令结束字符,即回车(ODH)

3.2.1.2 读取所有通道的数据命令

读取地址为 AA 的模块的所有通道的测量值。发送与接收全部用 ASCII 码表示。

请求: #AA (checksum) (CR)

定界符	#	命令起始字符
从机地址	AA	AA (范围 00 [~] FF) 表示模块的两位 十六进制地址
校验和	checksum	校验和。为定界符,从机地址的ASCII 码 16 进制的累加和,然后对 100H(16 进制)求余数。并将余数转换为 ASC 码作为 checksum 发送。
回车	CR	命令结束字符,即回车(ODH)

响应: >(data) (checksum) (CR)

定界符	>	命令起始字符
通道0数据	Data0	通道 0 测量值,以 "+"或 "-" 开头,后面是 4 位十进制整数, 一位小数点以及一位小数,测量 值小于四位整数是前面以 0 补位, 比如: -0035.7, +0125.6, +1200.0。 传感器异常时输出-3276.8。
通道1数据	Datal	通道1测量值,同上所述
通道2数据	Data2	通道2测量值,同上所述
通道3数据	Data3	通道3测量值,同上所述
通道4数据	Data4	通道4测量值,同上所述
通道5数据	Data5	通道 5 测量值,同上所述
校验和	checksum	校验和。为定界符,通道数据 Data0, Data1, Data2, Data3, Data4, Data5 的 ASCII 码 16 进制 的累加和,然后对 100H(16 进制) 求余数。然后将余数转换为两个 ASC 码并与接收到的 checksum 比 较,相等说明传输无误。
回车	CR	命令结束字符,即回车(ODH)

大连哲勤科技有限公司 联系电话: 0411-66831953 13795113856 传真: 0411-39855398

网址: http://www.infwin.com 邮件: infwin@163.com QQ:617165508 - 17 -

举例如下:读取01号模块的所有数据。

请求: #0184(CR)

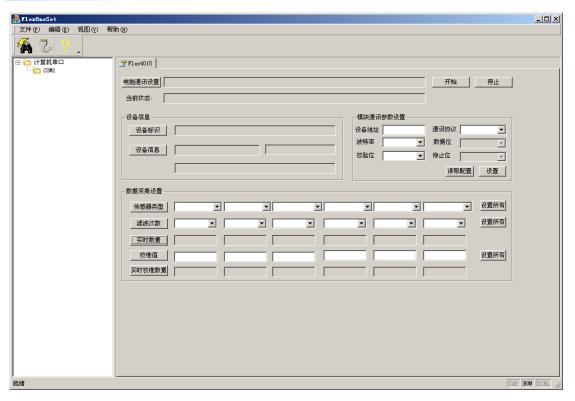
定界符	#	1字节	命令起始字符
从机地址	01	2 字节	模块地址为 01
校验和	84	2 字节	校验值 84 计算方法如上节所述
回车	CR	1 字节	命令结束字符,即回车(ODH)

响应: >+0265.8-3276.8-3276.8-3276.8-3276.8-3276.895 (CR)

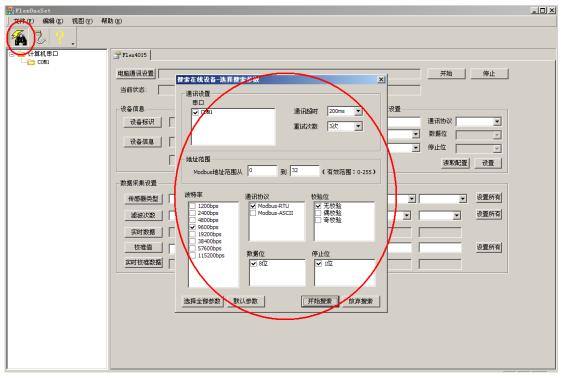
定界符	>	1字节	命令起始字符
通道0数据	+0265.9	7字节	通道 0 测量值为 265.9 度
通道1数据	-3276.8	7字节	通道1测量值为传感器异常值
			-3276.8
通道2数据	-3276.8	7字节	通道2测量值为传感器异常值
			<i>−</i> 3276. 8
通道3数据	-3276.8	7字节	通道3测量值为传感器异常值
			-3276. 8
通道4数据	-3276.8	7字节	通道4测量值为传感器异常值
			<i>−</i> 3276. 8
通道5数据	-3276.8	7字节	通道 5 测量值为传感器异常值
			-3276. 8
校验和	95	2 字节	校验值 95 计算方法如上节所述
回车	CR	1 字节	命令结束字符,即回车(ODH)
	·-	-	

大连哲勤科技有限公司 联系电话: 0411-66831953 13795113856 传真: 0411-39855398 网址: http://www.infwin.com 邮件: infwin@163.com QQ:617165508

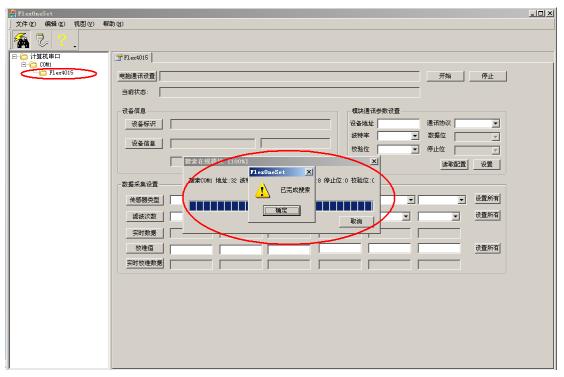
3.3 ASCII 码对照表

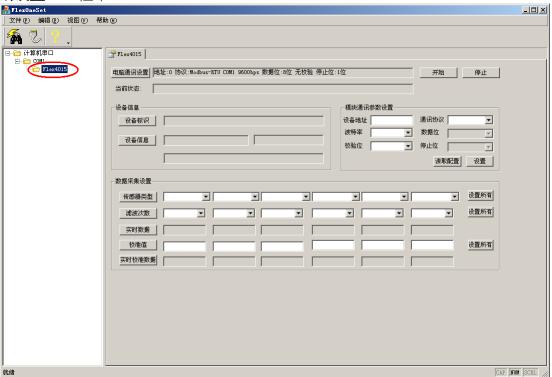

HEX	ASCII	HEX	ASCII	HEX	ASCII	HEX	ASCII
21	!	40	(a)	5F		7E	~
22	""	41	A	60	, _		
23	#	42	В	61	a		
24	\$	43	С	62	Ъ		
25	%	44	D	63	С		
26	&	45	Е	64	d		
27	'	46	F	65	е		
28	(47	G	66	f		
29)	48	Н	67	g		
2A	*	49	I	68	h		
2B	+	4A	J	69	i		
2C	,	4B	K	6A	j		
2D	-	4C	L	6B	k		
2E		4D	M	6C	1		
2F	/	4E	N	6D	m		
30	0	4F	0	6E	n		
31	1	50	P	6F	o		
32	2	51	Q	70	p		
33	3	52	R	71	q		
34	4	53	S	72	r		
35	5	54	T	73	s		
36	6	55	U	74	t		
37	7	56	V	75	u		
38	8	57	W	76	v		
39	9	58	X	77	w		
3A	:	59	Y	78	X		
3B	;	5A	Z	79	У		
3C	<	5B	[7A	z		
3D	=	5C	\	7B	{		
3E	>	5D]	7C			
3F	?	5E	^	7D	}		

4 设置软件使用说明

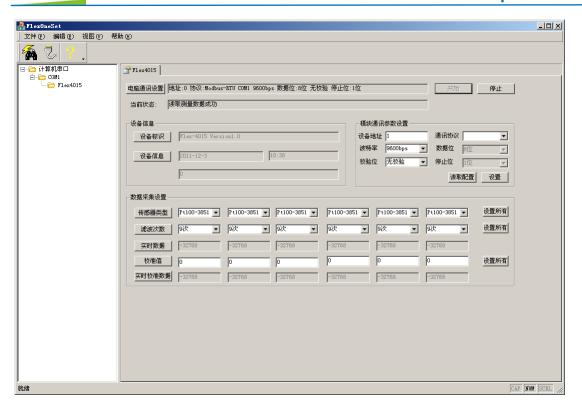

4.1 设置软件与处于设置状态的模块通信

先将模块的拨码开关第 10 位拨为 0N, 然后重新上电模块。打开设置软件。

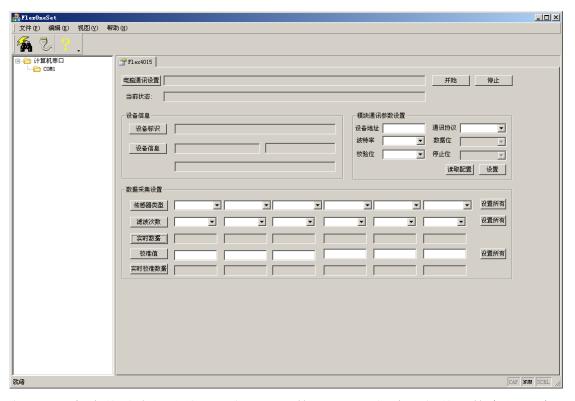

大连哲勤科技有限公司 联系电话: 0411-66831953 13795113856 传真: 0411-39855398 网址: http://www.infwin.com 邮件: infwin@163.com QQ:617165508

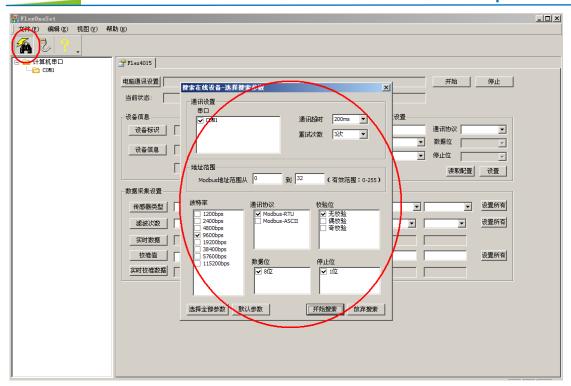

点选工具条中的搜索模块按钮,并确认通信设置对话框中的参数设置为 9600bps, 无校验, 8个数据位,一个停止位。地址范围从 0-32。然后点击"开始搜索"按钮。

搜索过程中, 所有检测到的模块均会添加到左侧设备栏中, 如图:

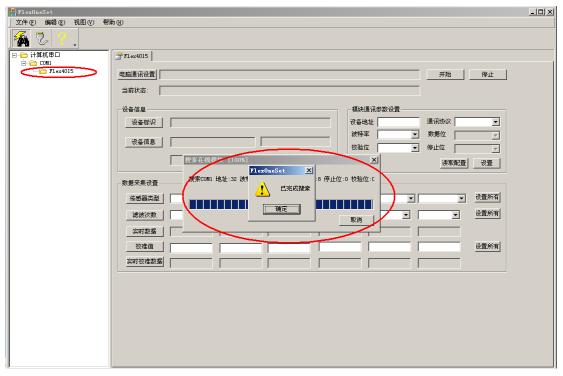


双击左侧计算机串□树形目录下的 "Flex4015"设备,通信参数将自动复制到右侧 "电脑通讯设置"一栏中:

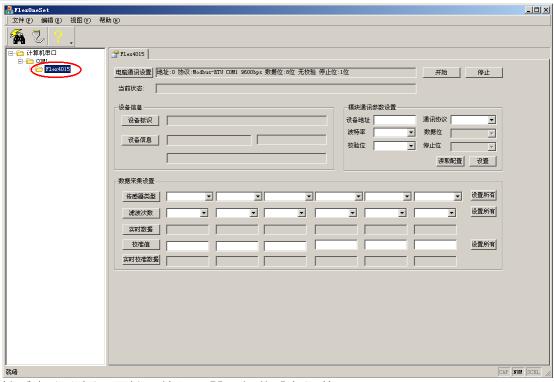

然后点击右侧"开始"按钮,即可与此设备通信,并开始设置模块的参数。

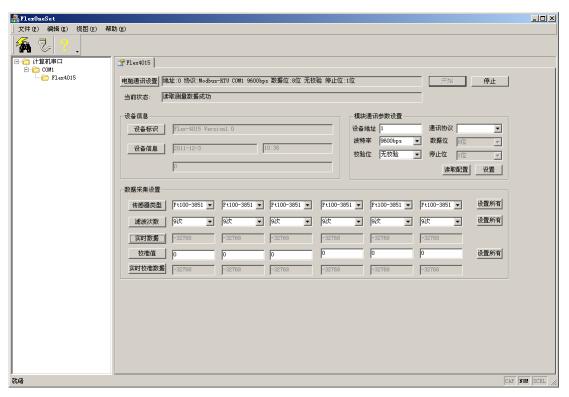

4.2 设置软件与处于运行状态的模块通信

在不知道模块地址,波特率等串口通信参数时,启动设置软件,如下:



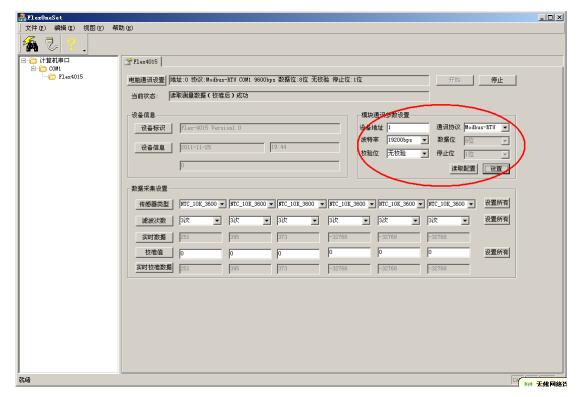
点选工具条中的搜索模块按钮,并选择通信设置对话框中可能的通信参数,地址范围。然后点击"开始搜索"按钮。


大连哲勤科技有限公司 联系电话: 0411-66831953 13795113856 传真: 0411-39855398 网址: http://www.infwin.com 邮件: infwin@163.com QQ:617165508 - 22 -


搜索过程中, 所有检测到的模块均会添加到左侧设备栏中, 如图:

双击左侧计算机串 \square 树形目录下的 "Flex4015" 设备,通信参数将复制到右侧 "电脑通讯设置"一栏中:

然后点击右侧"开始"按钮,即可与此设备通信。



4.3 串□通信参数如何设置

开始通讯后,在"模块通讯参数设置"一栏中,选择期望的通讯参数,如图,选择后,点击"设置"按钮,稍后更新成功后会弹出设置成功对话框。设置通讯参数后,确保拨码开

关不在全部 0FF 的状态,然后将模块重新上电,以使得通讯参数生效。此时,模块即可按照设置的通信参数进行通信。

5 使用串□调试软件读取数据

串□调试软件以 SSC0M32 为例。注意软件的波特率,校验位,数据位,以及停止位必须与模块的设置一致方可通信。

5.1 Modbus-RTU 通信协议

发送: 01 04 00 00 00 06 70 08

接收: 01 04 0C FF F9 80 00 80 00 80 00 80 00 80 00 B7 75

注意软件中要点选"HEX 发送", "HEX 显示"

5.2 Modbus-ASCII 通信协议

发送::010400000006F5

接收::01040CFFF98000800080008000800077

注意软件中要点选"发送新行",并取消选择"HEX发送","HEX显示"

5.3 ADAM 研华通信协议

发送: #0184

接收: >+0265.8-3276.8-3276.8-3276.8-3276.8-3276.895

注意软件中要点选"发送新行",并取消选择"HEX 发送","HEX 显示"

